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Quick introduction to graph embeddings

A 2-cell embedding of a graph Γ on a surface S is a drawing

of Γ on S without edge-crossings (i.e. such that arcs repre-

senting the edges of Γ have no crossings except when two

edges with a common vertex meet at that vertex), and such

that removal of the graph breaks up the surface into simply-

connected regions, called the faces of the embedding.

The characteristic of any such embedding is the Euler char-

acteristic χ of the carrier surface S, which is given by the

Euler-Poincaré formula χ = V − E + F , where V , E and F

are the numbers of vertices, edges and faces.

Any graph embeddable on the sphere is called planar.



The genus of a graph embedding

The genus of any graph embedding is the genus g of the
carrier surface, which is given by

χ =

2− 2g if the surface is orientable

2− g if the surface is non-orientable.

(Essentially, the genus is the number of handles or cross-
caps added to the sphere to obtain the surface.)

The minimum genus γ(Γ) of a graph Γ is the smallest genus
of all of its embeddings on orientable surfaces (occurring
when the number of faces is as large as possible), and sim-
ilarly, the maximum genus γM(Γ) is the largest such genus
(occurring when the number of faces is as small as possible).



Rotation systems

Every embedding of a graph Γ on an orientable surface S is
uniquely determined by the cyclic orientation of the edges at
each vertex. The rotation system can be used to determine
the faces of the embedding, and hence the genus, e.g.:
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4 Rotations 1: 2,3,4
2: 1,4,3
3: 1,2,4
4: 1,3,2

Faces [1,2,3], [1,3,4], [1,4,2], [2,4,3]

Characteristic χ = 4− 6 + 4 = 2

Genus 0 (planar)



Changing a rotation alters the embedding:
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4 Rotations 1: 2,3,4
2: 1,4,3
3: 1,2,4
4: 1,2,3

Faces [1,2,3], [1,3,4,2,1,4,3,2,4]

Characteristic χ = 4− 6 + 2 = 0

Genus 1 (embedding on the torus)



Maximum genus of a graph

It was proved by Xuong (1979) that the maximum genus of

an arbitrary finite graph Γ is given by

γM(Γ) =
1

2
(β(Γ)− ξ(Γ)),

where β(Γ) is the Betti number of Γ, which is 1 − V + E,

and ξ(Γ) is the deficiency of Γ.

The latter quantity is defined as follows. The deficiency

ξ(Γ, T ) of a spanning tree T of the graph Γ is the number

of components of Γ \ T that have an odd number of edges,

and then the deficiency ξ(Γ) of Γ is the minimum value of

ξ(Γ, T ) over all spanning trees of Γ.



Maximum genus of VT graphs

Martin Škoviera and Roman Nedela (1989) used theorems by

Xuong et al (on embeddings of 4-edge-connected graphs)

to prove that a finite connected vertex-transitive graph is

upper-embeddable whenever its valency or girth is at least 4.

The only such VT graphs that are not upper-embeddable are

3-valent examples of girth 3 (and order 18 or more).

It then follows that every connected finite Cayley graph is

upper-embeddable.

Next: What about minimum genus?



Minimum genus of VT graphs

In contrast to the maximum genus, relatively little is known
about the minimum genus of embeddings of vertex-transitive
graphs (in orientable and non-orientable surfaces).

There are some famous infinite families of VT graphs for
which the minimum orientable genus is known, e.g.:

• Cycle graph Cn and other Platonic graphs . . . genus 0

• Complete graph Kn . . . genus d(n−3)(n−4)
12 e

(Ringel & Youngs, 1968)

• Complete bipartite graph Kn,n . . . genus d(n−2)2

4 e
(Ringel, 1965)

• Hypercube Qn . . . genus (n−4)2n−3 + 1
(Beineke & Harary, 1965).



Another infinite family

Let G be a (finite) Hurwitz group – generated by elements
x and y such that x, y and xy have orders 2, 3 and 7.

Then G is the orientation-preserving group of automorphisms
of a regular map of type {7,3} on an orientable surface of
genus g > 1, where |G| = 84(g − 1), the maximum possible
number of conformal automorphisms of such a surface.

The Cayley graph on generating set {x, y, y−1} for G has an
embedding on the same surface, and contracts to the map
by replacing the 3-cycles for the relator y3 by single vertices.
These give minimum genus embeddings of both the Cayley
graph and the underlying graph of the map, as there are no
shorter relators than the obvious ones (x2, y3 and (xy)7).



There are infinitely many examples of such ‘Hurwitz’ maps,
each giving a quotient of the universal {7,3} tessellation of
the hyperbolic plane

. . . dual to the {3,7} tessellation below:



Minimum genus of other VT graphs

Jungerman & White (1980) determined the minimum genus
γ(A) of all orientable embeddings of all Cayley graphs for a
given finite abelian group A, in a large number of cases.

The minimum orientable genus has also been found for a
small number of sporadic examples of VT graphs, e.g.:

• Petersen graph . . . genus 1

• Heawood graph . . . genus 1

• Möbius-Kantor graph . . . genus 1
(Marušič & Pisanski, 2000)

• C3 × C3 × C3 . . . genus 7 (Brin & Squier, 1988).

• Cayley graphs for some other small groups.



The Petersen graph is non-planar since it has K5 as a graph

minor, but it can be drawn on the plane/sphere with just

two edge-crossings:

It can also be drawn on the torus with no edge-crossings

and five faces (e.g. faces of lengths 5, 5, 5, 6 and 9), and

so the minimum orientable genus of the Petersen graph is 1.



The minimum genus of non-orientable embeddings of the

Petersen graph is 1, given by a 2-cell embedding on the

projective plane with six pentagonal faces, as a regular map

of type {5,3}, and automorphism group A5:

(Take the standard drawing of the Petersen graph and place

a cross-cap within the five-point star at the centre.)



Finding the minimum genus of a graph

A lot of attention has been paid to the graph genus problem,
which is the problem of deciding whether a given connected
graph Γ has an orientable embedding of given genus g.

Filotti, Miller and Reif (1979) described an algorithm for
finding such an embedding when one exists, intended to run
in |V (Γ)|O(g) steps – but its validity has been questioned.

Thomassen (1989) showed that the graph genus problem is
NP-complete. More generally, finding the minimum genus
of a graph is NP-hard.

Also Thomassen (1991) proved a conjecture of Babai, that
for every g ≥ 3, there are only finitely many vertex-transitive
graphs with minimum genus g.



Finding the minimum genus of a graph (cont.)

Mohar (1999) developed a linear-time algorithm that finds

for a given graph Γ and surface S, either an embedding of

Γ in S, or a subgraph of Γ that is a minimal forbidden sub-

graph for embeddability in S (i.e. a minor for S).

This yields a constructive proof of the Robertson-Seymour

theorem about every surface S having finitely many minors,

but from a practical standpoint, the algorithm works well

only when S has very small genus (e.g. 0 and 1).

Still, we can sometimes exploit symmetry to find the mini-

mum genus of a VT graph, even when that genus is large.



Circulants

A circulant is a Cayley graph Cn(X) = Cay(Zn, X) for a
cyclic group. Examples are as follows:

Simple cycle Cn: X = {1}, edges {a, a+1} for all a ∈ Zn

Complete graph Kn: X = {1,2, . . . , n−1}, all possible edges

Complete bipartite graph Kn
2,
n
2
: X = {1,3,5, n−1}, even n

Paley graph P (q): X = set of non-zero squares in GF(q)

Kn − n
2K2 (Complete graph minus a perfect matching):

X = {1,2, . . . , n−1} \ {n2}, when n is even

Note: If X = {a1, . . . , ak}, we write Cn(a1, . . . , ak) for Cn(X).



Planar circulants

The question of planarity of connected circulant graphs was

settled completely by Heuberger (2003).

If X is ‘properly given’ (with y 6= ±x for every two x, y ∈ X)

and Cn(X) is connected, then Cn(X) is planar if and only if

(a) |X| = 1 (and Cn(X) is a simple cycle), or

(b) n is even, and X = {x, y} where y ≡ ±2x mod n, or

(c) n is even, and X = {x, n2} where x is even.

In particular, Cn(X) is non-planar whenever |X| ≥ 3.



Embeddings on the torus (genus 1)

Embeddings of circulant graphs on the torus were investi-

gated by Costa, Strapasson, Alves and Carlos, and reported

in a 2010 preprint.

Costa et al. claimed that if X is ‘properly given’ and Cn(X)

is connected, then Cn(X) has minimum genus 1 iff

(a) |X| = 2 and Cn(X) is non-planar, or

(b) |X| = 3 and X = {x, y, x+y}, or

(c) |X| = 3 and X = {x,2x, n2} with x and n
2 odd, or

(d) n = 8 and X = {1,2,4}.

... but they made mistakes in their analysis (see later).



More on minimum genus (of regular graphs)

For minimum genus, we need to maximise F (the number

of faces), and therefore minimise the average face-size.

This can often be found by trying to get as many triangular

faces as possible.

Counting incident edge-faces pairs in two different ways

gives 3F ≤ 2E = dn, where d is the valency, and it follows

that for genus 1 or 2 we need

−2 ≤ χ = V − E + F ≤ n−
dn

2
+
dn

3
=

(6−d)n

6

and so (d−6)n ≤ 12, which gives upper bounds of d ≤ 7 and

|X| ≤ 4 for small n, and d ≤ 6 and |X| ≤ 3 for large n.



Circulant embeddings of small genus

[Joint work with Ricardo Grande, 2012]

We took a theoretical approach, considering what triangular

faces are possible at a vertex and its neighbours, for a given

generating set X. We also did some experimentation by

computer, using both systematic and random searches.

This combination of approaches helped us to find a counter-

example (and then an infinite family of counter-examples)

to the ‘theorem’ of Costa, Strapasson, Alves and Carlos,

and also enabled us to find all connected circulants with

minimum genus 1 or 2.



Example A: n = 12 X = {1,3,4,6}

Can this have a genus 2 embedding? By Euler-Poincaré, we

would need −2 = 2−2g = χ = V −E+F = 12−42 +F , so

F = 28, with average face-size 2E/F = 84/28 = 3, which

means a triangulation.

The only triangles with edge {0,1} are {0,1,4} and {0,1,9},
and the only triangles with edge {0,4} are {0,4,1}, {0,4,3}
and {0,4,8}, etc., so for a triangulation, the only possible

rotations at vertex 0 are (1,9,6,3,11,8,4) and its reverse,

(1,4,8,11,3,6,9). Similarly, the possible rotations at vertex

3 are (4,0,9,6,2,11,7) and its reverse, (4,7,11,2,6,9,0).

But from the rotation at 0 we find [0,3,6] or [0,6,3] is a

face, but from the rotation at 3 we see this is impossible.



Example B: n = 12 X = {1,2,5}

Can this have a genus 1 embedding? By Euler-Poincaré, we

would need 0 = 2− 2g = χ = V − E + F = 12− 36 + F , so

F = 24, with average face-size 2E/F = 72/24 = 3, which

again means a triangulation.

The triangles with edge {0,1} are {0,1,2} and {0,1,11},
and the triangles with edge {0,2} are {0,2,1} and {0,2,7},
etc., so for a triangulation, the only possible rotations at

vertex b are (b + 1, b + 2, b + 7, b + 5, b + 10, b + 11) and its

reverse, (b+ 1, b+ 11, b+ 10, b+ 5, b+ 7, b+ 2).

Now taking the first rotation for all even b and the second

rotation for all odd b gives such an embedding on the torus.

The same happens whenever X = {1,2, n2 − 1}, for n
2 even.



Some other interesting/tricky cases

• C8(1,2,3,4) has minimum genus 2

Why? This is K8, and in their proof of the Heawood Map

Colouring Problem, Ringel and Youngs (1968) showed that

the minimum genus of the complete graph Kn is d(n−3)(n−4)
12 e.

• C10(1,2,4) has minimum genus 2

Why? One subgraph is C10(2,4), which is the union of two

copies of K5, and since K5 has minimum genus 1, it fol-

lows from a theorem of Battle, Harary, Kodama and Youngs

(1962) that C10(1,2,4) has genus at least 1+1 = 2.



• C20(1,5,10) has minimum genus greater than 2

Why? Small genus requires getting two triangular faces

at many vertices, and those triangular faces have to be

bounded by triples of the form {i, i+ 5, i+ 10}, but then

the edges {i, i± 1} are forced to lie in a face of length 5 or

more, which makes the genus too large.

• C10(1,2,4,5) has minimum genus greater than 2

This one needed a computation to check several possibilities.

• C11(1,2,4) has minimum genus greater than 2

This one needed a lot of computation to check several pos-

sibilities in a number of sub-cases.



Circulants with minimum genus 1

Up to isomorphism, the connected circulants with minimum

genus 1 are as follows:

• Cn(a1, a2) when this is non-planar;

• Cn(a1, a2, a3) when a3 = ±(a1+a2);

• Cn(1,2, n2), when n ≡ 2 (mod 4) and n ≥ 10;

• Cn(1,2, n2−1), when n ≡ 0 (mod 4) and n ≥ 12;

• C8(1,2,4) and C9(1,2,4).



Circulants with minimum genus 2

Up to isomorphism, the connected circulants with minimum

genus 2 are as follows:

• Cn(1,2, n2), when n ≡ 0 (mod 4) and n ≥ 12;

• Cn(1,2, n2−1), when n ≡ 2 (mod 4) and n ≥ 10;

• Cn(2,4, n2), when n ≡ 2 (mod 4) and n ≥ 10;

• C12(1,2,4), C12(1,3,6), C12(1,4,6), C12(2,3,6),

C12(3,4,6), C8(1,2,3,4) and C12(1,4,5,6).



The Hoffman-Singleton graph

The Hoffman-Singleton graph is the Moore graph of valency

7 and diameter 2. As such, it has 1 + 7 + 7 ·6 = 50 vertices,

and 7 ·50/2 = 175 edges, and girth 5. It is vertex-transitive,

and indeed 3-arc-transitive, but not a Cayley graph.

It automorphism group is isomorphic to PΣU(3,5), of order

252000. The stabiliser of a given vertex v is isomorphic to

S7, and acts faithfully on the neighbourhood of v.

But its automorphism group has no subgroup of order 175 or

350, so the Hoffman-Singleton graph is not the underlying

graph of an edge-transitve or regular map.



Theorem [Klara Stokes & MC, proved in 2014]:

The minimum genus of non-orientable embeddings of the

Hoffman-Singleton graph is 57, via an embedding with 70

pentagonal faces (and Euler characteristic −55).

In fact, there exist such embeddings with map automorphism

group isomorphic to C5 or C7, but of no larger order.

Proof method. Take a graph automorphism θ, and consider

orbits of S = 〈θ〉 on undirected circuits of length 5. Then

systematically determine all ways in which a subset of these

can be combined together to give 70 faces of an embedding,

with valid ‘local’ rotation at each vertex. This can be done

when θ has order 5 or 7.



Hoffman-Singleton graph (cont.)

We can take θ as one particular automorphism of order 5

that fixes no vertex, and find 14 orbits of 〈θ〉 of length 5

that combine together to give the 70 faces of a minimum

genus non-orientable embedding, with map automorphism

group S = 〈θ〉 of order 5.

Or we can take θ as any automorphism of order 7, which

fixes just one vertex, and find 10 orbits of 〈θ〉 of length 7

that combine together to give the 70 faces of a minimum

genus non-orientable embedding, with map automorphism

group S = 〈θ〉 of order 7. See the picture [KS] following.

We also found one with trivial automorphism group.



A minimum genus non-orientable embedding of the

Hoffman-Singleton graph with 7-fold symmetry



Theorem [Klara Stokes & MC, proved in 2014]:

The minimum orientable genus of the Hoffman-Singleton

graph is 29, coming from an embedding with 69 faces (and

Euler characteristic −56).

In fact, there exist such embeddings with map automorphism

group of order 5, but of no larger order.

Proof method. As for the non-orientable case, but requiring

a consistent rotation system (across all 50 vertices). One

such embedding has 64 pentagonal faces and 5 hexagonal

faces, with automorphism group of order 5.



Thank you



Title: Minimum genus embeddings of vertex-transitive graphs

Speaker: Marston Conder (University of Auckland)

Abstract:

By a theorem of Škoviera and Nedela (1989), almost all

vertex-transitive graphs are ‘upper-embeddable’, in that they

have 2-cell embeddings on orientable surfaces of maximum

conceivable genus, with just one or two faces. (The only

exceptions are 3-valent examples of girth 3 and order 18 or

more.) In particular, every finite connected Cayley graph is

upper-embeddable.

In contrast, relatively little is known about the minimum

genus of vertex-transitive graphs. Finding the minimum



genus of a given connected graph is a notoriously difficult

problem, except in some very special circumstances (such

as when the graph is planar, or is a Cayley graph for some

quotient of the (2,3,7) triangle group).

In this talk, I will describe two recent developments on this

topic. One is some work with Ricardo Grande in 2012/13,

on finding the minimum genus of families of connected cir-

culants (Cayley graphs for cyclic groups), including a com-

plete determination of all such graphs that have minimum

genus 0, 1 or 2. The second is joint work in 2014 with Klara

Stokes, on exploiting symmetries to find the smallest genus

of embedding of the Hoffman-Singleton graph, in both the

orientable and non-orientable cases, with 69 faces and 70

pentagonal faces respectively.


